Assessing the Feasibility of the Virtual Smartphone Paradigm in Countering
Zero-Click Attacks

Narmeen Shafqat®
Northeastern University
shafqat.n@northeastern.edu

Engin Kirda
Northeastern University
ek@ccs.neu.edu

Abstract

Zero-click attacks exploit unpatched vulnerabilities
in chat apps, such as WhatsApp and iMessage,
enabling root access to the user’s device without their
interaction, thereby posing a significant privacy risk.
While Apple’s Lockdown mode and Samsung’s Message
Guard implement virtual sandboxes, it is crucial to
recognize that sophisticated zero-click exploits can
potentially bypass the sandbox and compromise the
device. This paper explores the feasibility of countering
such attacks by shifting the attack surface to a
virtual smartphone ecosystem, developed using readily
available off-the-shelf components. Considering that
zero-click attacks are inevitable, our cross-platform
security system is strategically designed to substantially
reduce the impact and duration of any potential
successful attack. Our evaluation highlighted several
trade-offs between security and usability. Moreover, we
share insights to inspire further research on mitigating
zero-click attacks on smartphones.

Keywords: Zero-Click Attacks, Zero-Day, Pegasus
Spyware, Mobile Security, Virtual Smartphone.

1. Introduction

The increasing use of smartphones for social
networking and banking has made them prime targets
for cybercriminals. Unlike traditional cyberattacks
that require user interaction through social engineering,
cybercriminals now use zero-click exploits utilizing
zero-day (i.e., unpatched) vulnerabilities in popular
chat apps to compromise smartphones without user
involvement (Amnesty, 2021). These exploits avoid
persistence to evade detection by forensics and

“Equal Contribution.

Cem Topcuoglu*
Northeastern University
topcuoglu.c@northeastern.edu

Aanjhan Ranganathan
Northeastern University
aanjhan @northeastern.edu

Attacker exfiltrates data and
activates camera/ microphone

SRZA O

p—
@ Chats Photos Contacts
_

T A X UE

Location Emails Recordings

Attacker exploits
zero-day bug

©_,

Exploit for
WhatsApp

Target device
gets infected

Figure 1. Attacker exploits zero-click zero-day bug
in a chat app to gain root access to the target device.

anti-malware utilities (Sheikh, R., |2021). Notably, in
2016, a text containing suspicious links received by
UAE activist Ahmed Mansoor led security researchers
to uncover iOS vulnerabilities exploited by the
zero-click spyware, named Pegasus. This spyware has
since targeted high-profile figures worldwide, including
Amazon’s CEO Jeff Bezos, Al Jazeera reporters, allies
of late Saudi journalist Jamal Khashoggi, and political
dissidents in Hungary, Morocco, and India (Benjakob,
2022). A successful zero-click attack allows attackers
to access sensitive data (e.g., messages, contacts,
photos, and files), log keystrokes, track location, and
even activate the device’s camera and microphone for
surveillance (Figure [I), posing severe privacy and
security risk. In fact, attackers only require the victim’s
phone number to send the exploit; hence, gaining access
to the victim’s contact list also puts their contacts at risk.

To counter zero-click attacks, Apple’s i0OS 16
introduced Lockdown mode (Apple Inc, [2022), and
Samsung’s Galaxy S23 implemented a virtual sandbox
”Message Guard” (Samsung, [2023)). Yet, sophisticated
zero-click exploits can potentially circumvent them
and compromise the device (Microsoft, 2022 Project
Zero, 2017). Non-Samsung Android users also remain
susceptible to these attacks. A naive way of protection
is to avoid smartphones or use burner phones with

Attacker exploits Server runs chat apps in Target device

zero-day bug isolation is safe
@ o —
—O® o
Exploit for v b [\/‘
WhatsApp Only WhatsApp gets infected —

Figure 2. Envisioned Zero-Click Secure Framework:
Users access remote, isolated apps via screen sharing,
limiting zero-click exploit to the targeted app.

burner sims, but this restricts internet use. Mobile
browser interfaces are not optimized for chat apps,
and the exploit if penetrated into memory could risk
device security. Using a secondary phone for chat apps
is ineffective, as such exploits can leverage cross-app
vulnerabilities to compromise other apps. The user may
rely on desktop-based clients or web apps, e.g., for
WhatsApp; however, carrying a laptop is inconvenient
for real-time messaging during activities like hiking
or shopping. Besides, not all chat apps have such
interfaces, and permitting only SMS can jeopardize
device security. The Mobile Verification Toolkit
(MVT, 2021) analyzes device backups for zero-click
compromise, but its effectiveness is limited to known
attack vectors. Considering inevitable software bugs, it
is imperative to develop a zero-click resilient framework
that can at least limit information loss during an attack.

In this paper, we share our experiences while
designing a zero-click secure framework for high-risk
individuals, such as investigative journalists, who sought
a secure method to use chat apps while ensuring
maximum privacy during surveillance attacks. We
analyzed the zero-click attack landscape, identified
essential properties to limit the attack’s impact and
lifespan, and developed a remote access mechanism
(Figure [2) that shifted the attack surface to a
virtual smartphone ecosystem. We leveraged readily
available commercial off-the-shelf (COTS) components
for proof-of-concept, employing containerized Android
emulators (Android, |2022c) for isolating apps and Web
Real-Time Communication (WebRTC, [2021) for screen
sharing and remote interaction. A user study, exempted
by the Institutional Review Board (IRB), evaluated the
system’s usability and performance, revealing several
shortcomings and challenges in securing smartphones
against zero-click attacks.

This paper makes the following contributions:

1. We define design requirements to protect
smartphones from zero-click attacks,
emphasizing scalability and usability, while
minimizing attack impact and duration.

2. We evaluate the performance and usability of

the implemented zero-click secure framework and
highlight challenges of using COTS components.

3. We share our experiences and lessons learned
in finding a reliable and scalable sandboxing
solution for 24/7 hosting of chat apps,
while ensuring seamless user interaction and
high-quality performance over the Internet.

Recognizing the impracticality of achieving a perfect
solution to zero-click attacks, our objective is to identify
challenges, limitations, and research opportunities in
constructing a zero-click secure system, providing
valuable insights to researchers working in this field.

2. Background and state-of-the-art
2.1. Zero-click exploits

Zero-click exploits allow the attacker to take control
of a device without user interaction. They target smart
apps, such as WhatsApp, Signal, and iMessage, that
receive messages and calls from any source, including
untrusted ones. The attacker gears a zero-click attack
by sending a specially crafted message, image, or
voicemail, containing malicious code, to the target
device via a wireless connection (Wi-Fi, cellular, or
Bluetooth). The code exploits a zero-day vulnerability
in the app, granting the attacker root access to the device.

Zero-click exploits are not new. Apple discovered
a zero-click vulnerability in iOS 6 in 2012 (Yasar,
K., 2021). In 2020, Samsung patched a zero-click
vulnerability in its graphics library that affected all
their devices since 2014 (WccfTech, 2020). Zero-click
exploits from QuaDream, Paragon, and Cognyte have
targeted encrypted chat apps like iMessage, WhatsApp,
and Signal (Gallagher, R., [2022). However, the
discovery of zero-click exploits in Pegasus spyware
(NSO-Group, [2021) drew significant attention due to
its global misuse by nation-states to monitor their
opponents and critics. Pegasus exploited WhatsApp
through unanswered messages or calls, and even
bypassed BlastDoor security utility on iOS devices
(Amnesty, 2021} Benjakob, |2022). Typically, it operates
in the phone’s temporary memory without causing
performance issues or excessive battery drainage,
thereby evading detection by endpoint security systems.

2.2. Current state-of-the-art

The technical details of how zero-click exploits
compromise smartphones are still largely unknown.
Thus, existing security solutions that analyze requested
permissions (Canbay et al., [2017), API and system
calls (Cai et al., 2018; Saracino et al., [2016), network

addresses, resource consumption (Galal et al., 2016),
etc., have failed to detect and prevent them. Although
the MVT tool can analyze device backups and detect
known Pegasus infections, it cannot identify real-time
zero-click attacks or prevent data leakage post-attack.

Unfortunately, most studies on detecting zero-day
exploits focussed on non-mobile OS (Blaise et al.,[2020;
Kumar and Sinha, 2021), while zero-click exploits
target vulnerabilities in mobile apps. The few studies
on mobile-based zero-day malware relied on signature
or anomaly-based detection methods. Signature-based
approaches (Kouliaridis et al., 2020) only detected
repackaged zero-day malware and required extensive
sample collection. Anomaly-based methods (Barbhuiya
et al., |2020; Jang et al., [2015) focussed on deviations
from normal smartphone activity, but required high
processing power and could not detect malware using
anti-malware or encryption techniques. Some studies
also used machine learning (Amin et al., 2020; Millar
et al., |2021), but were slow and ineffective against
sandbox-evading malware (Qamar et al.,2019).

Apple’s i0S 16 recently introduced Lockdown mode
as an optional protection against zero-click exploits.
It restricts wired connections, shared albums, device
management, and new configuration profiles. In the
Messages app, it turns off link previews, search, Apple
service invitations, and non-image/video attachments. If
the user deactivates Lockdown mode to view specific
attachments (e.g., PDF), it will expose the device to
potential attacks. The mode also blocks non-contact’s
Facetime calls, overlooking potential threats from users’
contacts. Moreover, it disables custom website fonts
to prevent JavaScript code execution, resulting in
missing favicons and images on web pages. Website
administrators can detect its use through missing fonts
and can use logged IP addresses to fingerprint devices
and high-profile targets (Peterson, M., [2022). Despite its
strength, Lockdown mode can be potentially bypassed
by advanced zero-click exploits (Microsoft, 2022]).

Samsung asserts that its Knox platform also protects
against zero-click exploits involving video and audio
formats, although it has been bypassed before (Project
Zero, [2017). To counter image-based attacks on
Samsung Messages and Messages by Google, the
Galaxy S23 series introduces the Samsung Message
Guard sandbox. It analyzes images in a virtual space on
the smartphone and blocks malicious ones. However, it
does not protect the device against image-based attacks
on third-party apps and is limited to the S23 series.

Acknowledging that zero-day vulnerabilities will
continue to exist and advanced zero-click exploits can
potentially bypass sandbox to impact the user’s device,
we chose to migrate the chat apps remotely. While

this concept of virtual smartphones is not new, prior
implementations (Chen and Itoh, 2010; MITRE, 2014)
are outdated and fall short against zero-day malware
that utilizes native libraries and advanced obfuscation
techniques. In summary, most Android users lack
immediate holistic protection against zero-click attacks.

3. Zero-click secure framework
3.1. Threat scenario

Based on our discussions with dissident journalists,
we envision a practical scenario where the victim,
a high-profile target, relies on popular, end-to-end
encrypted chat apps (i.e., WhatsApp and Signal) for
official and private communication on their smartphone.
The victim prefers these apps over email due to their
popularity among informants and resilience against
eavesdropping by authorities. = The attacker aims
to attain unfettered access to the victim’s device to
extract sensitive information, track location, or record
real-time audio and video, thereby mirroring recent
cases of surveillance using Pegasus. We assume that
the attacker knows the victim’s phone number and
possesses a potent zero-click exploit code that leverages
a zero-day vulnerability in one of the installed apps (e.g.,
WhatsApp) to compromise the smartphone without the
victim’s knowledge and interaction.

3.2. Desirable characteristics

We identified key properties for a zero-click resistant
system that prioritize optimal security and minimize
information leakage during a successful zero-click
attack, with minimal system and attacker assumptions.

No direct delivery of messages to the smartphone:
The mere delivery of a message containing the payload
exploit is enough to compromise the device; hence it is
crucial to avoid any direct delivery of messages.

Remote access to messages: Zero-click exploits can
potentially bypass input sanitization or sandbox, thereby
allowing malicious code to infiltrate the device memory.
Hence, even temporarily receiving messages on the
device or accessing them via email or web interface is
deemed insecure. Users should have a remote access
mechanism to retrieve messages externally.

Temporal and spatial application isolation: It
is required to prevent zero-click exploits targeting a
specific chat app (e.g., WhatsApp) from infecting other
apps and to minimize prolonged eavesdropping.

Scalable and usable: The system should support
additional apps without compromising performance and
enable easy access to messages over the Internet without
extensive user interaction or technical expertise.

Remote Server
Server runs mobile OS

Control request

ﬁ
Client

Screen Share ()
| QC)
J Chat apps are isolated

Remote Control

—

Periodic Resetting

Figure 3. Zero-Click Secure Architecture: Remote
app access via screen sharing, Message routing via
cloud SMS Gateway, and periodic server reset.

3.3. Experimental architecture

We designed a zero-click secure architecture using
COTS components that attempts to block (or reduce)
all possible attack vectors. Our framework (Figure [3)
shifts the attack surface by migrating sensitive apps
from the user’s device (client) to a virtual smartphone
(remote server). As chat apps parse messages, even
from untrusted numbers, they are an obvious attack
vector. Hence, we shifted all chat apps to the server.
While third-party apps like WhatsApp and Signal can
be registered remotely, shifting built-in messaging app
was challenging. To address this, we used a cloud-based
SMS gateway that enables SMS communication on any
device, including computers, over the telecom network.

Moving chat apps remotely is insufficient to prevent
zero-click exploits, as they can evade input sanitization
at the server and reach the client. To allow secure remote
access, we developed a user-friendly screen sharing
and remote control mechanism that shares screen pixels
with the client, ensuring that malware cannot reach
it. Additionally, the remote control feature allows
the user to control the remote apps by forwarding
keystrokes from the mirrored screen to the server. We
recognized that zero-click exploits targeting a specific
app could exploit cross-app vulnerabilities, potentially
compromising the remaining apps on the server. This
makes it imperative to isolate each app in a sandbox-like
environment, such as separate virtual machines or
docker containers. Currently, there is no evidence of
cross-0S exploitation for zero-click attacks, as these
exploits specifically abuse zero-day bugs in smart apps.
Hence, a zero-click exploit targeting App A in sandbox
A cannot escape to the non-mobile host OS (e.g., Linux
server) and into sandbox B to compromise App B. This
setup confines a zero-click attack to the targeted app.

To prevent prolonged eavesdropping on the
vulnerable app, we periodically reset each instance
to its unaffected snapshot (as required by the user).

Pegasus avoids persistence to evade detection; hence,
resetting the smartphone to factory settings eliminates
it, terminating the attacker’s connection and compelling
app re-infection (Sheikh, R.,[2021). In short, we aim to
restrict the attack’s scope by accessing remote, isolated
apps through screen mirroring.

3.4. Implementation

We explored various methods for remote execution
of mobile OS, app isolation, and remote interaction
(Section[3)). The most effective approach was running an
Android emulator (Android, 2022c)) on a Linux server.
Android OS was chosen for its open-source nature
and wider accessibility, although the client OS can be
Android or iOS. We assumed that underlying computing
resources (client, server, screen sharing protocol, and
SMS Gateway) were secure against cyber and physical
attacks, with the exception of zero-click exploitation.

Server setup and application isolation. We set
up an Android cloud emulator (Google, [2021) on
Google Cloud Platform (GCP) using a Linux instance,
allowing us to run the official Android Emulator as a
web service within Docker (Docker, 2021). Docker
is an open-source platform that leverages OS-level
virtualization to isolate apps in containers, providing
separation from the host system. To mitigate the risk
of cross-app zero-click exploitation, we assigned each
app (WhatsApp, Signal, and the Message app) to a
separate Docker container (Figure [d). WhatsApp and
Signal were set up on the server using a Google voice
number. The Message app was configured with Twilio
(Twilio, [2022)), a cloud-based SMS gateway service, that
forwarded messages to and from the server securely over
HTTPS (TLS 1.2 encryption), eliminating the need for
a physical SIM card. To reduce the risk of zero-click
infections, the API can be customized to allow messages
from verified contacts only and disable link previews in
text messages. IPhone users can also use this setup,
as iMessages appear as regular SMS on the server.
Moreover, with a Kernel-based Virtual Machine (KVM),
we could smoothly execute Android OS on a dedicated
Linux server and other cloud platforms: Amazon Web
Services (AWS) and Microsoft Azure.

Remote interaction with chat apps. For security,
messages were delivered to the server and then relayed
to the client via screen mirroring. The Cloud
Emulator utilized WebRTC protocol (WebRTC, 2021)
for real-time remote screen display on the web without
requiring any plugins. It eliminates the need for manual
connection acceptance and sustains connectivity after
the system restarts. As direct peer-to-peer connections
are not always possible over the Internet, we accessed

Internet
® Twilio SMS
Client @ ® Gateway

Android | | Android | | Android
Emulator| |Emulator| |Emulator

Docker Engine
Host OS

Remote Control Request

Screen Sharing stream

Remote Control Server

Figure 4. Framework Realization: Remote execution
of chat apps in containerized Android Emulators on
GCP, accessed via WebRTC on the client’s browser.

the server by its public IP address and employed a
TURN (Traversal Using Relays around NAT) server to
relay screen contents to the client. Note that iOS does
not fully support screen sharing via WebRTC on mobile
web browsers. Hence, an alternate method using PNG
screenshots was implemented for screen capturing. We
utilized a React web application to remotely control
the server by relaying user keystrokes on the mirrored
screen (client) to the server. We also modified it to
provide a full-screen view, enhancing user experience.
This setup restricts zero-click attacks to the targeted app
and does not affect other remote apps or the client.
Other security features. To limit the attack’s
impact and prevent eavesdropping, we periodically reset
each instance to its initial state (e.g., every three days
or as needed). This eliminates undetected infections
and terminates the attacker’s connections. Moreover,
as each remote instance operates as an independent
Android phone, we enabled Kiosk mode using the
freely available GoKiosk app (Intricare, 2022), ensuring
constant accessibility to predefined apps on the server.

4. Evaluating performance and usability

We evaluated our framework’s performance and
usability through: 1) System Testing conducted by our
team, and 2) Quality Assurance Testing performed by
prospective users. Note that the security analysis of
the framework involves sending a zero-click exploit to
the client and forensically examining it for potential
infection. Due to the absence of zero-click binaries,
we could not conduct comprehensive security testing.
Nevertheless, the fact that chat apps were isolated across
a cross-platform system means the established design
principle of separation of privilege safeguards them
against cross-application attacks, i.e., a vulnerability in
one app does not compromise other apps.

4.1. Setup

We thoroughly tested our implementation on various
smartphones; Android (Motorolla Nexus 6, LG V40

ThinQ, Samsung Galaxy S10E, Oppo A5, and Vivo
Ul), and iOS (iPhone XR, iPhone X, and iPhone 7).
The server was set up on a Linux-based VM instance
on GCP with nested virtualization enabled and was
publicly accessible via its IP address. We utilized
separate containers for each app (WhatsApp, Signal, and
Message app) and configured the apps with a Google
Voice number. We set up additional GCP accounts with
different Google Voice numbers, allowing user study
participants to test the framework without linking their
personal accounts until they were fully satisfied. To
encourage active participation, random texts, images,
gifs, etc., were frequently shared on group chats.

4.2. System testing

We evaluated the system’s performance in terms of
connection time, usability, latency, and scalability.

Connection time: We evaluated it by accessing the
server on multiple phones at different times and using
various networks (3 Wi-Fi and 2 cellular). We utilized
WebRTC-based screen-sharing for Android clients and
PNG-based screen-sharing for iOS clients. We made 25
connection attempts to the remote server, documenting
whether the connection succeeded on the first attempt,
the number of reconnections needed otherwise, and if
the connection terminated during system usage. Each
experiment lasted for an hour. In all attempts, the clients
were able to connect seamlessly to the server on the first
attempt, no re-attempt was required, and the connection
remained stable throughout the experiment.

Usability: We tested usability on devices with
varying screen sizes, manufacturers, and web browsers
(Chrome, Firefox, Microsoft Edge, UC, Oppo, and
Opera). In all tests, the text was clear, the remote
display quality was excellent, and the entire screen
was effectively utilized. = However, the additional
communication layer introduced a slight delay that may
present usability challenges in certain situations.

Measuring lag: In practice, it is difficult to
precisely measure the introduced lag due to client
and server asynchronization. Using dedicated Android
apps, we estimated additional transmission time as
half of the Round Trip Time (RTT). The client app
sent a test message, and the server app replied with
an acknowledgment (ACK), allowing the client app
to calculate RTT as the difference in timings. We
minimized measurement error by averaging the lag of
ten test messages. Although RTT is influenced by
network speed and traffic load, these measurements
provided a quantitative value for the lag. Table [I]
presents the average lag and sample’s standard deviation
(SD) in seconds (s) across networks. Considering the

Table 1. Lag introduced by COTS components
Introduced Lag (s)
Wi-Fi Cellular

A B C A B

LG V40 ThinQ | 0.44 | 0.47 | 0.42 | 0.49 | 0.51

Client Device

Nexus 6 0.45 | 0.51 | 0.43 | 0.50 | 0.53
Galaxy S10E 0.47 | 0.52 | 0.49 | 0.53 | 0.56
Oppo A5 042 | 0.53 | 0.54 | 0.54 | 0.55
Vivo Ul 0.45 | 048 | 0.49 | 0.48 | 0.50

Average Lag = 0.49 s, Standard Deviation = 0.04 s

Cost Analysis

1750 A

1500 -

-
N
v
o

1000 4 —4— Cloud Server Monthly Cost
—#— Dedicated Server One-time Cost
—#— Dedicated Server Monthly Cost

2 4 6 8 10 12 14
Number of Remote Applications

~
[
o

Estimated Cost ($)

u
=3
S

N
v
o

o

Figure 5. Cost and resource analysis per user for
deploying server end on GCP vs. dedicated server.

security benefits of our solution, the user study further
assessed whether the minute lag of 0.49 seconds (with
0.04 seconds SD) was acceptable to users.

Resource requirement and scalability: In practice,
users may want to add more chat apps remotely (e.g.,
Viber, Telegram). We conducted a cost analysis for a
single user based on the number of remote apps added.
Each Android emulator requires a minimum of 4GB
RAM and 2GB disk space to run an app efficiently.
For scalability evaluation, we used a cost-effective GCP
cloud instance with an Intel Haswell CPU, 8GB RAM,
and 100GB storage as the baseline for running one chat
app in a containerized Android emulator. We recorded
the monthly costs as we increased the RAM (16, 32,
and 64GB) corresponding to the number of apps. Note
that users may also deploy the server side themselves to
reduce recurring expenditures. For this, we used a Dell
PowerEdge server with 8GB RAM and 1TB disk space
($780) as the base server for running a chat app, scaling
the RAM as the number of apps increased. Figure [3]
shows that the dedicated server is more cost-effective
in the long run, despite the higher initial investment.
However, the cloud setup is practically more secure in
terms of the server’s physical and logical security.

4.3. Quality assurance testing

To evaluate the usability of our envisioned system in
practice, we solicited feedback from potential users.

Ethical considerations: Our study was exempted
under the IRB Exemption Category 3 - Benign
Behavioral Interventions by our institution’s IRB, as
we did not collect sensitive or personal information or
involve deception or attacks. We recruited participants
(aged 18+) by sending invitation emails to 30 potential
targets of zero-click attacks from diverse regions,
including three journalists and privacy-conscious
smartphone users. Out of the 30, 27 agreed to
participate. We scheduled Zoom meetings with them to
obtain informed consent and provide instructions. To
address privacy concerns, we pre-configured the apps
using Google voice numbers and did not collect any
personally identifiable information (e.g., name or email)
or IP addresses. Participants’ responses were analyzed
and reported as group data, ensuring confidentiality.
Moreover, all conversations were deleted after the study.

User study and results: Participants accessed the
server via the mobile web browser using the public
IP and temporary login credentials. Once logged
in, they exchanged random text messages, images,
gifs, etc., with saved contacts or engaged in group
chats. Our team oversaw the other contacts and group
chats, enabling participants to actively communicate
and observe for potential delays or performance issues.
After the one-hour test, participants shared their
feedback regarding following through a Google survey:
1) prior knowledge of zero-click attacks, 2) experience
with connecting to the remote server, 3) experience
with sending test messages, and 4) suggestions for
system improvement. Out of 27 participants, 21 had
a prior understanding of the subject. All participants
successfully connected to the remote server on their
first attempt, regardless of location and time, with
stable connections throughout the study. The evaluation
also assessed user-friendliness (e.g., text readability,
full-screen display) and if the lag caused by COTS
components is acceptable. 21 participants found the
system user-friendly and accepted the lag, while six
participants reported significant lag despite finding the
system user-friendly. Users suggested to keep the native
keyboard on-screen and ensure a lag-free experience.

5. Experiences and lessons learned

Below, we summarize key lessons learned from
designing and implementing a zero-click secure
framework with COTS components, aiming to assist
researchers in building more robust security solutions.

5.1. Running mobile OS on the server

Lesson learned # 1: The official Android Emulator
stands out as the most reliable, usable, and scalable
option among the limited available solutions for running
the mobile OS virtually 24/7 in portrait orientation.

To set up a virtual smartphone on a Linux-based
dedicated server initially, we explored local and cloud-
based emulators for Android and iOS. Emulating iOS
was challenging as Apple restricts it to iOS devices and
Xcode simulator (Apple,2023), making even web-based
i0OS emulators like Appetize.io (Appetize, [2022) and
Corellium (Corellium, 2022)) costly for 24/7 service.

In contrast, we found various open solutions
for emulating Android devices (Table [2). The
official Android Emulator, despite having high system
requirements and limited devices with PlayStore,
offered a stable environment. This is because we
ran one app per emulator, which prevented these
limitations from affecting the user experience. We
also explored Cuttlefish (Android, 2022b), an Android
virtual device that replicates physical phone behavior at
the OS level. However, Cuttlefish required excessive
resources, and its compatibility was restricted to API
levels after 28 and a few Debian distributions, making
it unsuitable to set up multiple Android instances.
Unofficial Android gaming emulators like Memu
(Memu, 2021)) and BlueStacks (BlueStacks, 2021 had
sluggish performance, booting issues, excessive ads, and
were often flagged as malicious by antivirus software.
We also tested Android-x86 OS (OSDN, 2021), a port
of the Android Open Source Project (AOSP) for Intel
x86 or AMD-powered devices, on VirtualBox, but it
was resource-intensive even for running a single chat
app. The cloud-based emulators we explored, Anbox
(Anbox, 2018) and GenyMotion (GenyMotion, 2021),
also had limitations. Anbox, while stable, could not
display the screen in portrait mode despite having screen
rotation enabled. GenyMotion ran Android OS in
portrait orientation using a custom AOSP ROM and
an OpenGL-capable graphics card but was costly ($0.5
per hour per instance) and lacked a built-in Google
Play Store and compatibility with most Google Apps
(GApps). Besides, Microsoft’s Windows 11 subsystem
for Android (Microsoft, |2021b)) encountered crashing
issues and also lacked Play Store. Overall, the official
Android emulator proved to be the most reliable option
for remotely running mobile OS in portrait mode.

5.2. Sandboxing applications on the server

Lesson learned # 2: Android Application
Sandbox is ineffective against zero-click cross-app

Table 2. Current remote mobile OS solutions.
Solution Limitations

Xcode simulator Need iOS device, Costly,
iOS web emulators | Limited run-time, Costly,
Official Android Specific requirements,
Emulator Few PlayStore devices,
4 | Cuttlefish Resqurce intf?nsive,
Specific requirements,
RAM hungry, many ads
booting issues,

Doesn’t boot on cloud,
Resource intensive,

No portrait mode, No
PlayStore, few distros,
Costly, No PlayStore,
Not GApps compatible,
Not stable, Specific
system requirements.

W[N] = H

Android Gaming
5 | Platforms

6 | Android-x86 VM

7 | Anbox

8 | GenyMotion

Windows 11
Android Subsystem

and cross-0S attacks. Isolate apps via virtualization or
containerization, with security and resource trade-offs.

Android’s default Application Sandbox (Android,
2022a)) runs each app in a separate process with a unique
User ID (UID), protecting OS applications, native code,
and higher-level components. However, it can be
bypassed by zero-click exploits, granting unauthorized
root access (WccfTech, 2020). To enhance isolation,
we explored virtualization and containerization on the
server. Running apps in Android Emulator within
separate virtual machines provided the highest security
against cross-app and cross-OS exploits; as the exploit
cannot exfiltrate from Android instance A running app
A to the Linux host and into Android instance B
to compromise app B. However, this approach was
resource-intensive. Alternatively, we used Docker to run
multiple instances of Android Emulator, isolating each
app in a separate container. Containerization offered a
lightweight solution to mitigate zero-click attacks and
was thus preferred over separate virtual machines.

5.3. Implementing server on cloud platform

Lesson learned # 3: Mobile OS requires hardware
virtualization for enhanced performance and graphics,
but running it on bare-metal cloud servers is expensive
and lacks long-term scalability. Alternatively, employ
software acceleration to run mobile OS on the cloud.

After successfully implementing a containerized
Android Emulator setup on our Linux server, we tested
its feasibility on cloud platforms like GCP, AWS, and
Azure. However, the emulator’s performance in the
cloud was sluggish. To avoid the high costs associated

with bare-metal cloud instances or GPUs to enable
machine and graphic acceleration (Android, 2021), we
opted for software acceleration. By simulating GPU
processing using the computer’s CPU, we achieved
satisfactory performance when running the Android
Emulator in Docker containers on the cloud.

5.4. Exploring remote connection protocols

Lesson learned # 4: Remote connection protocols
(VNC and RDP) default to landscape orientation, which
is inconvenient for viewing on the client. In contrast,
WebRTC offers screen sharing in portrait mode.

Next, to establish remote connectivity between
the server and client without direct message delivery,
we explored popular remote connection protocols
like Microsoft’s Remote Desktop Protocol (RDP)
(Microsoft, |2021a) and Virtual Network Computing
(VNCO) (Richardson et al., |1998)). These protocols are
primarily designed for desktop use and only support
landscape display orientation, which is not user-friendly.
Despite several attempts, the shared screen remained
in landscape mode. In contrast, WebRTC offers
screen-sharing capabilities in both web and native
applications, supporting portrait mode. Hence, we
integrated WebRTC’s API with a React web application
to provide screen sharing and remote control services.

5.5. Exploring remote connection apps

Lesson learned # 5: Unlike computer-to-computer
and mobile-to-computer screen sharing apps, mobile-to
mobile solutions are scarce. Most of them are also
expensive, limited to local networks, lack remote control
features, and do not allow unattended server access.

We evaluated popular screen sharing and remote
control apps on Google Play Store and Apple App Store
against WebRTC. Most apps, including Remote Chrome
Desktop (Google LLC, 2020), RealVNC (RealVNC,
2021), and SplashTop (Splashtop, |2022), required either
the server or client to be a desktop computer, leaving
the screen orientation issue unresolved. Therefore, we
focused on mobile-to-mobile remote access solutions
listed in Table While Skype (Skype, [2022),
ScreenTalk (RMT,[2020), and Inkwire (ClockworkMod,
2020a)) offered high-quality screen sharing, they lacked
remote control functionality. Vysor (ClockworkMod,
2020b) and Scrcpy (Pkk3345678, [2021) required
physical device access, which was impractical for our
setup. DroidVNC-ng (Beier, C., 2022), RemoDroid
(Dimitrov, 1., [2020), and AirpowerMirror (Apowersoft,
2022) provided both features but had stability, latency,
and network limitations. Proprietary solutions like
TeamViewer (TeamViewer, 2022), AnyDesk (AnyDesk,

Table 3. Mobile-to-mobile screen sharing utilities.

Solution Limitations
1 | Skype No remote control functionality,
’ ScreenTalk, Sluggish performance,
Inkwire No remote control functionality,
3 Screpy, Requires physical connection to
Vysor mirrored screen,
4 | DroidVNC Unstable (often crashes),
5 | RemoDroid Local network, Slow, Root req,
6 | Airpower Local network only, Slow,
7 lii/ncizlsllfwer’ Very costly license,
8 | AirDroid Limited usage in free version.

2022), and AirDroid (SandStudio, [2021) offered quality
screen sharing and remote access but were expensive
and lacked control over the mirrored data. Hence, we
preferred WebRTC for our needs.

5.6. Open-ended security and usability issues

Our virtual smartphone setup mitigates zero-click
attacks but entails several usability and security
trade-offs to enhance security and user experience.

Security: Keeping the server updated with latest
COTS versions is key to reducing attack vectors. While
chat apps can be vulnerable to zero-click attacks, a
compromised SMS gateway can also risk the Messages
app. However, spatial isolation localizes the attack
to the affected app. Our setup also benefits i0S
users. While hosting iMessages remotely is costly, our
setup balances client security and iMessage features
(e.g., encrypted chat and screen effects) by receiving
iMessages as regular SMS on the server, thus mitigating
iMessage-based exploits. Upon availability of exploit
binaries, we plan to assess our system’s resilience
by intentionally compromising the vulnerable app and
using MVT to ensure other apps and the client at least
remain protected against known zero-click exploits.

Usability: Our implementation lacks a notification
mechanism, requiring manual checking for new
messages. As i0S and Android’s sandbox allow
limited content sharing across apps, developing a
server-side notification app is only feasible with rooting/
jailbreaking the phone, which can compromise device
security. This trade-off between security and usability
is similar to secure government systems that require
manual message checking. Unlike Apple’s Lockdown
mode, our setup allows remote viewing of any file type,
but received files are only saved until the server reset
time. Additionally, while videos and audio messages
can be received, enabling audio playback requires

relaying the audio of communicating parties.
6. Conclusion

Zero-click attacks exploit unpatched vulnerabilities
without user interaction, posing privacy risks. While
sophisticated zero-click exploits can potentially bypass
device-based sandboxing, this paper explored the
feasibility of countering such attacks using COTS-
based virtual smartphone ecosystem. Essentially, we
redirected the attack from the client by running chat
apps in remote, isolated instances, accessed via screen
sharing. This confined the attack to the vulnerable
app, highlighting that zero-click attacks can be mitigated
but not entirely eradicated. We evaluated our setup
through an IRB-exempted user study, with 21 out
of 27 participants expressing full satisfaction. We
also shared lessons learned and highlighted additional
components required to achieve optimal security, albeit
at the expense of usability. Our work aims to inspire
further research in countering zero-click spyware.

References

Amin, M., Tanveer, T. A., Tehseen, M., Khan, M.,
Khan, F. A., & Anwar, S. (2020). Static
malware detection and attribution in android
byte-code through an end-to-end deep system.
Future generation computer systems, 112—126.

Amnesty. (2021). Forensic methodology report: How to
catch nso group’s pegasus doc 10/4487/2021
(tech. rep.). Amnesty International. UK.

Anbox. (2018). Android in a box. https://anbox.io/

Android. (2021). Configure hardware acceleration for
the Android Emulator. https : / / developer .
android.com/studio/run/emulator-acceleration

Android. (2022a). Application Sandbox. https://source.
android.com/security/app-sandbox

Android. (2022b). Cuttlefish Virtual Android Devices.
https : // source . android . com / setup / create /
cuttlefish (accessed: 03.11.2023)

Android. (2022c¢). Run apps on Android Emulator. https:
//developer.android.com/studio/run/emulator

AnyDesk. (2022). AnyDesk Remote Desktop. https://
play.google.com/store/apps/details ?id=com.
anydesk.anydeskandroid

Apowersoft. (2022). ApowerMirror- Screen Mirroring.
https://play.google.com/store/apps/details ?id=
com.apowersoft.mirror

Appetize. (2022). Appetize - Run native mobile apps.
https://appetize.io/| (accessed: 04.10.2023)

Apple. (2023). Xcode. https ://developer. apple . com/
documentation/xcode (accessed: 04.13.2023)

Apple Inc. (2022). About Lockdown Mode. https : //
support.apple.com/en-us/HT212650

Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S.
(2020). Droidlight: Lightweight anomaly-
based intrusion detection system for
smartphone devices. Proceedings of the
21st International Conference on Distributed
Computing and Networking, 1-10.

Beier, C. (2022). droidVNC-NG. https ://play. google.
com/store/apps/details ?id=net.christianbeier.
droidvnc_ng

Benjakob, O. (2022). The nso file. https://www.haaretz.
com/ israel - news /tech - news /2022 - 04 - 05/
ty - article - magazine /nso - pegasus - spyware -
file - complete - list - of - individuals - targeted /
0000017f-ed7a-d3be-ad7f-tf7b5a600000

Blaise, A., Bouet, M., Conan, V., & Secci, S.
(2020). Detection of zero-day attacks: An
unsupervised port-based approach. Computer
Networks, 180, 107391.

BlueStacks. (2021). BlueStacks Play Bigger. https://
www.bluestacks.com/ (accessed: 05.17.2023)

Cai, H., Meng, N., Ryder, B., & Yao, D. (2018).
Droidcat: Effective android malware detection
and categorization via app-level profiling.
IEEE Transactions on Information Forensics
and Security, 14(6), 1455-1470.

Canbay, Y., Ulker, M., & Sagiroglu, S. (2017).
Detection of mobile applications leaking
sensitive data. 5th International Symposium on
Digital Forensic and Security, 1-5.

Chen, E. Y., & Itoh, M. (2010). Virtual smartphone over
ip. IEEE International Symposium on World of
Wireless, Mobile, Multimedia Networks, 1-6.

ClockworkMod. (2020a). Inkwire Screen Share. https:
/Iplay.google.com/store/apps/details ?id=com.
koushikdutta.inkwire

ClockworkMod. (2020b). Vysor - Android control.
https://play. google.com/store/apps/details ?
1d=com.koushikdutta.vysor

Corellium. (2022). Virtual devices with real accuracy.
https://www.corellium.com/

Dimitrov, 1. (2020). RemoDroid. https://play. google.
com/store/apps/details?id=de.im.RemoDroid

Docker. (2021). Docker. https://docs.docker.com/get-
started/overview/ (accessed: 04.10.2023)

Galal, H. S., Mahdy, Y. B., & Atiea, M. A. (2016).
Behavior-based features model for malware
detection. Journal of Computer Virology and
Hacking Techniques, 12(2), 59-67.

Gallagher, R. (2022). Zero-click’ hacks are growing
in popularity. https : // www . inquirer . com /

https://anbox.io/
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://source.android.com/setup/create/cuttlefish
https://source.android.com/setup/create/cuttlefish
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://play.google.com/store/apps/details?id=com.anydesk.anydeskandroid
https://play.google.com/store/apps/details?id=com.anydesk.anydeskandroid
https://play.google.com/store/apps/details?id=com.anydesk.anydeskandroid
https://play.google.com/store/apps/details?id=com.apowersoft.mirror
https://play.google.com/store/apps/details?id=com.apowersoft.mirror
https://appetize.io/
https://developer.apple.com/documentation/xcode
https://developer.apple.com/documentation/xcode
https://support.apple.com/en-us/HT212650
https://support.apple.com/en-us/HT212650
https://play.google.com/store/apps/details?id=net.christianbeier.droidvnc_ng
https://play.google.com/store/apps/details?id=net.christianbeier.droidvnc_ng
https://play.google.com/store/apps/details?id=net.christianbeier.droidvnc_ng
https://www.haaretz.com/israel-news/tech-news/2022-04-05/ty-article-magazine/nso-pegasus-spyware-file-complete-list-of-individuals-targeted/0000017f-ed7a-d3be-ad7f-ff7b5a600000
https://www.haaretz.com/israel-news/tech-news/2022-04-05/ty-article-magazine/nso-pegasus-spyware-file-complete-list-of-individuals-targeted/0000017f-ed7a-d3be-ad7f-ff7b5a600000
https://www.haaretz.com/israel-news/tech-news/2022-04-05/ty-article-magazine/nso-pegasus-spyware-file-complete-list-of-individuals-targeted/0000017f-ed7a-d3be-ad7f-ff7b5a600000
https://www.haaretz.com/israel-news/tech-news/2022-04-05/ty-article-magazine/nso-pegasus-spyware-file-complete-list-of-individuals-targeted/0000017f-ed7a-d3be-ad7f-ff7b5a600000
https://www.haaretz.com/israel-news/tech-news/2022-04-05/ty-article-magazine/nso-pegasus-spyware-file-complete-list-of-individuals-targeted/0000017f-ed7a-d3be-ad7f-ff7b5a600000
https://www.bluestacks.com/
https://www.bluestacks.com/
https://play.google.com/store/apps/details?id=com.koushikdutta.inkwire
https://play.google.com/store/apps/details?id=com.koushikdutta.inkwire
https://play.google.com/store/apps/details?id=com.koushikdutta.inkwire
https://play.google.com/store/apps/details?id=com.koushikdutta.vysor
https://play.google.com/store/apps/details?id=com.koushikdutta.vysor
https://www.corellium.com/
https://play.google.com/store/apps/details?id=de.im.RemoDroid
https://play.google.com/store/apps/details?id=de.im.RemoDroid
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.inquirer.com/business/zero-click-hacks-spy-phone-pegasus-20220227.html

business / zero - click - hacks - spy - phone -
pegasus-20220227 . html

GenyMotion. (2021). Android as a service. https://www.
genymotion.com/ (accessed: 05.17.2023)

Google. (2021). Build Your Own Cloud Emulator. https:
/[source.android.com/devices/automotive/start/
avd/cloud_emulator (accessed: 04.10.2023)

Google LLC. (2020). Chrome Remote Desktop. https:
//play.google.com/store/apps/details ?id=com.
google.chromeremotedesktop

Intricare. (2022). Gokiosk. https : / / play . google .
com / store / apps / details ? id = net . intricare .
enterprisedevicekiosklockdown

Jang, J.-w., Kang, H., Woo, J., Mohaisen, A., &
Kim, H. K. (2015). Andro-autopsy: Anti-
malware system based on similarity matching
of malware and malware creator-centric
information. Digital Investigation, 14, 17-35.

Kouliaridis, V., Barmpatsalou, K., Kambourakis, G., &
Chen, S. (2020). A survey on mobile malware
detection techniques. IEICE Transactions on
Information and Systems, E103.D(2), 204-211.
https://doi.org/10.1587/transinf.2019INI0003

Kumar, V., & Sinha, D. (2021). A robust intelligent zero
day cyber-attack detection technique. Complex
& Intelligent Systems, 7(5), 2211-2234.

Memu. (2021). Memu. https://www.memuplay.com/

Microsoft. (2021a). Understanding RDP. https://docs.
microsoft.com/en- us/troubleshoot/windows -
server/remote/understanding-remote-desktop-
protocol (accessed: 04.10.2023)

Microsoft. (2021b). Windows Subsystem for Android.
https://docs. microsoft.com/en-us/windows/
android/wsa/| (accessed: 05.17.2023)

Microsoft. (2022). Gatekeeper’s achilles heel. https://
www.microsoft.com/en-us/security/blog/2022/
12/19/gatekeepers-achilles-heel-unearthing-a-
macos-vulnerability/

Millar, S., McLaughlin, N., del Rincon, J. M., &
Miller, P. (2021). Multi-view deep learning for
zero-day android malware detection. Journal of
Information Security and Applications, 58.

MITRE. (2014). SVMP System Design and Architecture.
https://svmp.github.io/architecture.html

MVT. (2021). MVT. https://github.com/mvt-project/mvt

NSO-Group. (2021). Pegasus - Product Description.
https : // s3 . documentcloud . org / documents /
4599753/NSO-Pegasus.pdf]

OSDN. (2021). Android x86. https://osdn.net/projects/
android-x86/releases (accessed: 04.05.2023)

Peterson, M. (2022). Apple’s secure Lockdown Mode
may reduce web browsing anonymity. https://
appleinsider.com/ articles/22/08/25/apples -

secure - lockdown - mode - may - reduce - web -
browsing-anonymity (accessed: 05.17.2023)

Pkk3345678. (2021). Scrcpy. https://play.google.com/
store/apps/details?id=com.wujiyun.scrcpy.pro

Project Zero. (2017). Lifting the (hyper) visor:
Bypassing samsung’s kernel protection. https:
// googleprojectzero . blogspot.com/2017/02/
lifting-hyper-visor-bypassing-samsungs.html

Qamar, A., Karim, A., & Chang, V. (2019). Mobile
malware attacks: Review, taxonomy & future
directions. Future Generation Computer
Systems, 97, 887-909.

RealVNC. (2021). VNC Viewer. https://play. google .
com / store / apps / details ? id = com . realvnc .
viewer.android

Richardson, T., Stafford-Fraser, Q., Wood, K. R., &
Hopper, A. (1998). Virtual network computing.
IEEE Internet Computing, 2(1), 33-38.

RMT. (2020). Screen Talk. https://play.google.com/
store / apps / details ? id = com . kentuckyrmt .
screentalkremotemobile

Samsung. (2023). Message guard protects you from new
and invisible threats. https://news.samsung.
com/global/samsung-message- guard- protects-
you-from-new-and-invisible-threats

SandStudio. (2021). AirDroid. https://play.google.com/
store/apps/details7id=com.sand.airdroid

Saracino, A., Sgandurra, D., Dini, G., & Martinelli,
F. (2016). Madam: Effective and efficient
behavior-based android malware detection and
prevention. IEEE Transactions on Dependable
and Secure Computing, 15(1), 83-97.

Sheikh, R. (2021). “Legal” Spyware. https://wccftech.
com/legal - spyware - how - pegasus - exploits -
1phones-through-zero-click-bugs/

Skype. (2022). Skype. https://play. google.com/store/
apps/details?id=com.skype.raider

Splashtop. (2022). Splashtop Personal Access. https://
play.google.com/store/apps/details ?id=com.
splashtop.remote.pad.v2

TeamViewer. (2022). TeamViewer Remote Control.
https://play.google.com/store/apps/details ?id=
com.teamviewer.teamviewer.market.mobile

Twilio. (2022). Send SMS with Twilio. https://www.
twilio.com/docs/sms| (accessed: 04.10.2023)

WeccefTech. (2020). Samsung Finally Patches the 0-Click
Vulnerability. https://wccftech.com/samsung-
finally-patches-the-0-click-vulnerability/

WebRTC. (2021). Real-time communication for web.
https://webrtc.org/ (accessed: 04.10.2023)

Yasar, K. (2021). What Is a Zero-Click Attack. https://
www.makeuseof.com/what-is- a-zero-click-
attack-what-makes-it-so-dangerous/

https://www.inquirer.com/business/zero-click-hacks-spy-phone-pegasus-20220227.html
https://www.inquirer.com/business/zero-click-hacks-spy-phone-pegasus-20220227.html
https://www.genymotion.com/
https://www.genymotion.com/
https://source.android.com/devices/automotive/start/avd/cloud_emulator
https://source.android.com/devices/automotive/start/avd/cloud_emulator
https://source.android.com/devices/automotive/start/avd/cloud_emulator
https://play.google.com/store/apps/details?id=com.google.chromeremotedesktop
https://play.google.com/store/apps/details?id=com.google.chromeremotedesktop
https://play.google.com/store/apps/details?id=com.google.chromeremotedesktop
https://play.google.com/store/apps/details?id=net.intricare.enterprisedevicekiosklockdown
https://play.google.com/store/apps/details?id=net.intricare.enterprisedevicekiosklockdown
https://play.google.com/store/apps/details?id=net.intricare.enterprisedevicekiosklockdown
https://doi.org/10.1587/transinf.2019INI0003
https://www.memuplay.com/
https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://docs.microsoft.com/en-us/windows/android/wsa/
https://docs.microsoft.com/en-us/windows/android/wsa/
https://www.microsoft.com/en-us/security/blog/2022/12/19/gatekeepers-achilles-heel-unearthing-a-macos-vulnerability/
https://www.microsoft.com/en-us/security/blog/2022/12/19/gatekeepers-achilles-heel-unearthing-a-macos-vulnerability/
https://www.microsoft.com/en-us/security/blog/2022/12/19/gatekeepers-achilles-heel-unearthing-a-macos-vulnerability/
https://www.microsoft.com/en-us/security/blog/2022/12/19/gatekeepers-achilles-heel-unearthing-a-macos-vulnerability/
https://svmp.github.io/architecture.html
https://github.com/mvt-project/mvt
https://s3.documentcloud.org/documents/4599753/NSO-Pegasus.pdf
https://s3.documentcloud.org/documents/4599753/NSO-Pegasus.pdf
https://osdn.net/projects/android-x86/releases
https://osdn.net/projects/android-x86/releases
https://appleinsider.com/articles/22/08/25/apples-secure-lockdown-mode-may-reduce-web-browsing-anonymity
https://appleinsider.com/articles/22/08/25/apples-secure-lockdown-mode-may-reduce-web-browsing-anonymity
https://appleinsider.com/articles/22/08/25/apples-secure-lockdown-mode-may-reduce-web-browsing-anonymity
https://appleinsider.com/articles/22/08/25/apples-secure-lockdown-mode-may-reduce-web-browsing-anonymity
https://play.google.com/store/apps/details?id=com.wujiyun.scrcpy.pro
https://play.google.com/store/apps/details?id=com.wujiyun.scrcpy.pro
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://play.google.com/store/apps/details?id=com.realvnc.viewer.android
https://play.google.com/store/apps/details?id=com.realvnc.viewer.android
https://play.google.com/store/apps/details?id=com.realvnc.viewer.android
https://play.google.com/store/apps/details?id=com.kentuckyrmt.screentalkremotemobile
https://play.google.com/store/apps/details?id=com.kentuckyrmt.screentalkremotemobile
https://play.google.com/store/apps/details?id=com.kentuckyrmt.screentalkremotemobile
https://news.samsung.com/global/samsung-message-guard-protects-you-from-new-and-invisible-threats
https://news.samsung.com/global/samsung-message-guard-protects-you-from-new-and-invisible-threats
https://news.samsung.com/global/samsung-message-guard-protects-you-from-new-and-invisible-threats
https://play.google.com/store/apps/details?id=com.sand.airdroid
https://play.google.com/store/apps/details?id=com.sand.airdroid
https://wccftech.com/legal-spyware-how-pegasus-exploits-iphones-through-zero-click-bugs/
https://wccftech.com/legal-spyware-how-pegasus-exploits-iphones-through-zero-click-bugs/
https://wccftech.com/legal-spyware-how-pegasus-exploits-iphones-through-zero-click-bugs/
https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.splashtop.remote.pad.v2
https://play.google.com/store/apps/details?id=com.splashtop.remote.pad.v2
https://play.google.com/store/apps/details?id=com.splashtop.remote.pad.v2
https://play.google.com/store/apps/details?id=com.teamviewer.teamviewer.market.mobile
https://play.google.com/store/apps/details?id=com.teamviewer.teamviewer.market.mobile
https://www.twilio.com/docs/sms
https://www.twilio.com/docs/sms
https://wccftech.com/samsung-finally-patches-the-0-click-vulnerability/
https://wccftech.com/samsung-finally-patches-the-0-click-vulnerability/
https://webrtc.org/
https://www.makeuseof.com/what-is-a-zero-click-attack-what-makes-it-so-dangerous/
https://www.makeuseof.com/what-is-a-zero-click-attack-what-makes-it-so-dangerous/
https://www.makeuseof.com/what-is-a-zero-click-attack-what-makes-it-so-dangerous/

	Introduction
	Background and state-of-the-art
	Zero-click exploits
	Current state-of-the-art

	Zero-click secure framework
	Threat scenario
	Desirable characteristics
	Experimental architecture
	Implementation

	Evaluating performance and usability
	Setup
	System testing
	Quality assurance testing

	Experiences and lessons learned
	Running mobile OS on the server
	Sandboxing applications on the server
	Implementing server on cloud platform
	Exploring remote connection protocols
	Exploring remote connection apps
	Open-ended security and usability issues

	Conclusion

